Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Size and Weight Reduction of Integrated Lens Antennas Using a Cylindrical Air Cavity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ngoc Tinh Nguyen ; Institut d'Electronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164, University of Rennes 1, Rennes, France ; Anthony Rolland ; Artem V. Boriskin ; Guido Valerio
more authors

A simple and low-cost solution to reduce the height and weight of extended hemispherical lenses is proposed based on the introduction of a cylindrical air cavity above the primary feed. The presence of an additional air-dielectric interface enables one to shorten the focal length of the lens, which leads to antenna height and weight reductions of 13% and 27%, respectively. The communication describes the design principle and performance characteristics of the reduced-size integrated lens antenna, superimposed with a conventional synthesized elliptical one. Both prototypes are fabricated in Rexolite and measured in Ka band. A good agreement between the performance characteristics of the antennas is observed. The additional advantages of the proposed approach are explained, and its applicability for lens antennas made of high-k materials is discussed.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 12 )