By Topic

Parallel implementation of a combustion chamber simulation with MPI-OpenMP hybrid techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kornyei, L. ; Dept. of Math. & Comput. Sci., Szechenyi Univ., Gyor, Hungary

The parallelization techniques utilized in a study of gas flow in a combustion chamber are described and discussed in this paper. Models of compressible fluid dynamics are solved with the finite volume method, and an additional algorithm, called “snapper” that handles piston and valve movement. In order to achieve an acceptable scaling on a CPU cluster with 240 cores, a two-stage parallelization with MPI in conjecture with OpenMP is implemented. For some types of physical investigations, the actual spatial region of interest is somehow changing, deforming, or moving in time in a predefined fashion. Handling gas dynamics with piston motion, even with the simplest models requires precaution. Apart from numerical and physical corrections, there are challenges, where multiple types of unstructured, and specially generated deforming grids are handled in a computer system with distributed memory. In the present work the results of the first implementations and benchmarks are presented, which prove to be well scaling for this modest-sized cluster.

Published in:

MIPRO, 2012 Proceedings of the 35th International Convention

Date of Conference:

21-25 May 2012