By Topic

A cellular automata based algorithm for voronoi diagram of arbitrary shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Talebi, M. ; Dept. Of Comput. Eng. & IT, Amirkabir Univ. Of Technol., Tehran, Iran ; Mohammadalimaddi, A. ; Razzazi, M.

Presented in this paper is a cellular automata based algorithm for computing voronoi diagram of arbitrary shapes. There is no limitation for sites; they can be circles, rectangles, points or anything else. Our algorithm outperforms previous works in speed and accuracy. The proposed algorithm constructs the correct voronoi diagram as a wave from each site is propagated to the environment. When waves collide to each others, the borders of voronoi cells are built. We used asynchronous CA that made our algorithm faster. Our algorithm can be used in distributed systems and supposed as a parallel strategy to build voronoi diagram of arbitrary shapes.

Published in:

MIPRO, 2012 Proceedings of the 35th International Convention

Date of Conference:

21-25 May 2012