By Topic

Trainspotting: Combining fast features to enable detection on resource-constrained sensing devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berlin, E. ; Dept. of Comput. Sci., Tech. Univ. Darmstadt, Darmstadt, Germany ; Van Laerhoven, K.

This paper focuses on spotting and classifying complex and sporadic phenomena directly on a sensor node, whereby a relatively long sequence of sensor samples needs to be considered at a time. Using fast feature extraction from streaming data that can be implemented on the sensor nodes, we show that on-sensor event classification can be achieved. This approach is of particular interest for wireless sensor networks as it promises to reduce wireless traffic significantly, as only events need to be transmitted instead of potentially large chunks of inertial data. The presented approach characterizes the essence of an event's signal by combining several simple features on low-cost MEMS inertial data. Using a scenario and real data from vibration signatures generated by passing trains, we show how with this approach the classification of passing trains is possible on miniature nodes placed near the railroad tracks. Experiments show that, at the cost of slightly more local processing, the chosen features produce good train type classification with up to 90% of trains correctly identified.

Published in:

Networked Sensing Systems (INSS), 2012 Ninth International Conference on

Date of Conference:

11-14 June 2012