By Topic

Automatic software architecture recovery: A machine learning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sajnani, H. ; Univ. of California Irvine, Irvine, CA, USA

Automatically recovering functional architecture of the software can facilitate the developer's understanding of how the system works. In legacy systems, original source code is often the only available source of information about the system and it is very time consuming to understand source code. Current architecture recovery techniques either require heavy human intervention or fail to recover quality components. To alleviate these shortcomings, we propose use of machine learning techniques which use structural, runtime behavioral, domain, textual and contextual (e.g. code authorship, line co-change) features. These techniques will allow us to experiment with a large number of features of the software artifacts without having to establish a priori our own insights about what is important and what is not important. We believe this is a promising approach that may finally start to produce usable solutions to this elusive problem.

Published in:

Program Comprehension (ICPC), 2012 IEEE 20th International Conference on

Date of Conference:

11-13 June 2012