By Topic

Identifying computational phases from inter-process communication traces of HPC applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luay Alawneh ; Software Behaviour Analysis (SBA) Research Lab, Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC, Canada H3G 1M8 ; Abdelwahab Hamou-Lhadj

Understanding the behaviour of High Performance Computing (HPC) systems is a challenging task due to the large number of processes they involve as well as the complex interactions among these processes. In this paper, we present a novel approach that aims to simplify the analysis of large execution traces generated from HPC applications. We achieve this through a technique that allows semiautomatic extraction of execution phases from large traces. These phases, which characterize the main computations of the traced scenario, can be used by software engineers to browse the content of a trace at different levels of abstraction. Our approach is based on the application of information theory principles to the analysis of sequences of communication patterns found in HPC traces. The results of the proposed approach when applied to traces of a large HPC industrial system demonstrate its effectiveness in identifying the main program phases and their corresponding sub-phases.

Published in:

Program Comprehension (ICPC), 2012 IEEE 20th International Conference on

Date of Conference:

11-13 June 2012