By Topic

Ingredient matching to determine the nutritional properties of Internet-sourced recipes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Manuel Müller ; Artificial Intelligence, University of Erlangen-Nuremberg, Germany ; Morgan Harvey ; David Elsweiler ; Stefanie Mika

To utilise the vast recipe databases on the Internet in intelligent nutritional assistance or recommender systems, it is important to have accurate nutritional data for recipes. Unfortunately, most online recipes have no such data available or have data of suspect quality. In this paper we present a system that automatically calculates the nutritional value of recipes sourced from the Internet. This is a challenging problem for several reasons, including lack of formulaic structure in ingredient descriptions, ingredient synonymy, brand names, and unspecific quantities being assigned. We present a system that exploits linguistic properties of ingredient descriptions and nutritional knowledge modelled as rules to estimate the nutritional content of recipes. We evaluate the system on a large Internet sourced recipe database (23.5k recipes) and examine performance in terms of ability to recognise ingredients and error in nutritional values against values established by human experts. Our results show that our system can match all of the ingredients for 91% of recipes in the collection and generate nutritional values within a 10% error bound from human assessors for calorie, protein and carbohydrate values. We show that the error is less than that between multiple human assessors and also less than the error reported for different standard measures of estimating nutritional intake.

Published in:

2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops

Date of Conference:

21-24 May 2012