By Topic

Memory Bandwidth Efficient Two-Dimensional Fast Fourier Transform Algorithm and Implementation for Large Problem Sizes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Akin, B. ; Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Milder, P.A. ; Franchetti, F. ; Hoe, J.C.

Prevailing VLSI trends point to a growing gap between the scaling of on-chip processing throughput and off-chip memory bandwidth. An efficient use of memory bandwidth must become a first-class design consideration in order to fully utilize the processing capability of highly concurrent processing platforms like FPGAs. In this paper, we present key aspects of this challenge in developing FPGA-based implementations of two-dimensional fast Fourier transform (2D-FFT) where the large datasets must reside off-chip in DRAM. Our scalable implementations address the memory bandwidth bottleneck through both (1) algorithm design to enable efficient DRAM access patterns and (2) data path design to extract the maximum compute throughput for a given level of memory bandwidth. We present results for double-precision 2D-FFT up to size 2,048-by-2,048. On an Alter a DE4 platform our implementation of the 2,048-by-2,048 2D-FFT can achieve over 19.2 Gflop/s from the 12 GByte/s maximum DRAM bandwidth available. The results also show that our FPGA-based implementations of 2D-FFT are more efficient than 2D-FFT running on state-of-the-art CPUs and GPUs in terms of the bandwidth and power efficiency.

Published in:

Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on

Date of Conference:

April 29 2012-May 1 2012