By Topic

Near Threshold Voltage Word-Line Voltage Injection Self-Convergence Scheme for Local Electron Injected Asymmetric Pass Gate Transistor 6T-SRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kousuke Miyaji ; Department of Electrical, Electronic, and Communication Engineering, Chuo University, Tokyo, Bunkyo-ku, Japan ; Yasuhiro Shinozuka ; Shinji Miyano ; Ken Takeuchi

A statistical threshold voltage VTH shift variation of the pass gate (PG) transistor in local electron injected asymmetric PG transistor 6T-SRAM is investigated. Measurements show that the positive correlation between the PG transistor VTH shift (VTHPG shift) and its original VTH of the PG transistor (VTHPG) before injection due to VD effect is self-compensated by the negative correlation between those by ID effect. As a result, the measured VTHPG shift is less correlated with the VTHPG before electron injection. Therefore, near VTH word-line (WL) voltage injection self-convergence scheme is proposed to avoid VTHPG shift in the high VTHPG cell and enhance in the low VTHPG cell. By the proposed scheme, VD effect is reduced and ID effect is enhanced. The improved negative correlation factor is observed between the VTHPG shift and the forward VTHPG before injection. R2 is increased by 21 times by the proposed scheme. As a result, excess write margin degradation is suppressed. Furthermore, the fabricated 64 kb SRAM macro demonstrates 3 times larger WL operation voltage window, 41% less read margin variation and 80 mV lower VCCMIN after the local electron injection.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:59 ,  Issue: 8 )