By Topic

Message-Passing Algorithms and Improved LP Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanjeev Arora ; Department of Computer Science, Princeton University ; Constantinos Daskalakis ; David Steurer

Linear programming (LP) decoding for low-density parity-check codes (and related domains such as compressed sensing) has received increased attention over recent years because of its practical performance-coming close to that of iterative decoding algorithms-and its amenability to finite-blocklength analysis. Several works starting with the work of Feldman showed how to analyze LP decoding using properties of expander graphs. This line of analysis works for only low error rates, about a couple of orders of magnitude lower than the empirically observed performance. It is possible to do better for the case of random noise, as shown by Daskalakis and Koetter and Vontobel. Building on work of Koetter and Vontobel, we obtain a novel understanding of LP decoding, which allows us to establish a 0.05 fraction of correctable errors for rate-½ codes; this comes very close to the performance of iterative decoders and is significantly higher than the best previously noted correctable bit error rate for LP decoding. Our analysis exploits an explicit connection between LP decoding and message-passing algorithms and, unlike other techniques, directly works with the primal linear program. An interesting byproduct of our method is a notion of a “locally optimal” solution that we show to always be globally optimal (i.e., it is the nearest codeword). Such a solution can in fact be found in near-linear time by a “reweighted” version of the min-sum algorithm, obviating the need for LP. Our analysis implies, in particular, that this reweighted version of the min-sum decoder corrects up to a 0.05 fraction of errors.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 12 )