By Topic

Predictive Torque and Flux Control Without Weighting Factors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rojas, C.A. ; Dept. of Electron. Eng., Univ. Tec. Federico Santa Maria, Valparaiso, Chile ; Rodriguez, J. ; Villarroel, F. ; Espinoza, J.R.
more authors

Finite control set model predictive control is an emerging alternative in the control of power converters and drives. The method allows flexible control schemes with fast dynamics. However, the standard formulation of this type of controllers is based on a minimization of a single cost function. This optimization method requires weighting factors that depend on the system parameters and operating point. The calculation of these factors is achieved through a nontrivial process. In this paper, a predictive torque and flux control of an induction machine drive fed by a three-phase two-level voltage source inverter is developed. The proposed strategy replaces the single cost function with a multiobjective optimization based on a ranking approach. This approach makes the tuning of weighting factors unnecessary for a correct operation. Simulation and experimental results on steady state and dynamic operation are presented to illustrate the good behavior of the drive.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 2 )