Cart (Loading....) | Create Account
Close category search window

Improved Geolocation and Earth Incidence Angle Information for a Fundamental Climate Data Record of the SSM/I Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Berg, W. ; Dept. of Atmos. Sci., Colorado State Univ., Fort Collins, CO, USA ; Sapiano, M.R.P. ; Horsman, J. ; Kummerow, C.

The long-term data record of microwave imager data from the series of six Special Sensor Microwave/Imagers (SSM/Is) on board the Defense Meteorological Satellite Program (DMSP) spacecraft has been used to produce global multidecadal time series of a number of geophysical parameters, including precipitation, total precipitable water, ocean surface wind speed, and sea ice extent. As part of an effort to produce an intercalibrated fundamental climate data record (CDR) of the brightness temperature (Tb) data from the SSM/I, an examination of geolocation errors and the subsequent impact on the view angle [or the Earth incidence angle (EIA)] is performed. Using a combination of techniques, estimates of changes in the sensor/spacecraft attitude, including deviations in roll, pitch, and yaw, have been computed for the life of each of the SSM/I sensors. Applying these corrections results in an improved pixel geolocation, but more importantly, it provides accurate estimates of the EIA across the scan and throughout each orbit. An analysis of uncertainties in the calculation of EIA shows mean errors within 0.1 °, which translates to errors in the calibration of less than 0.2 K for all channels. The availability of these precise estimates of EIA is extremely important for producing CDRs since the mean EIA decreases over time due to the decay in the DMSP orbits, which will lead to an artificial climate trend if not properly accounted for by the geophysical retrieval algorithms.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.