By Topic

Inter-Channel Crosstalk Cancellation for Nyquist-WDM Superchannel Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jie Pan ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Cheng Liu ; Detwiler, T. ; Stark, A.J.
more authors

Superchannel WDM systems employ narrow channel spacing to achieve high spectral efficiency and increase channel capacity. Additionally, these systems attempt to avoid inter-channel interference (ICI) and inter-symbol interference (ISI), by creating and maintaining both spectral and temporal orthogonality. This in turn imposes a strong requirement on the spectral amplitude and phase of the received signals. For Nyquist-WDM systems, the temporal shapes are Nyquist pulses, requiring uniform spectral density with flat phase. In practice, these requirements are only partially achieved, resulting in non-ideal Nyquist systems with inter-channel interference (ICI). We propose and demonstrate two joint ICI cancellation methods based on our new “super receiver” architecture, which jointly detects and demodulates multiple subchannels simultaneously. The maximum a posteriori (MAP) algorithm is most readily implemented for systems with channel spacing equal to the baud rate, and the adaptive linear equalizer is effective for all channel spacings. Simulation results show that both joint ICI cancellation schemes outperform conventional linear equalization, approaching the performance of an isolated single channel.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 24 )