By Topic

Automatic detection of liver lesion from 3D computed tomography images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dijia Wu ; Siemens Corp. Res., Princeton, NJ, USA ; Liu, D. ; Suehling, M. ; Tietjen, C.
more authors

Automatic lesion detection is important for cancer examination and treatment, whereas it remains challenging due to the varied shape, size, and contextual anatomy of the diseased masses. In this paper, we present a robust and effective learning based method for automatic detection of liver lesions from computed tomography data. The contributions of this paper are the following. First, we develop a cascade learning approach to lesion detection comprising multiple detectors in the spirit of marginal space learning. Second, a gradient based locally adaptive segmentation method is proposed for solid liver lesions. The segmentation results are used to extract informative features for classification of generated candidates. Extensive experimental validation is carried out on 660 volumes with 1,302 hypodense lesions, and 234 volumes with 328 hyperdense lesions, with a resulting 90% detection rate at 1.01 false positives per volume for hypodense lesion and 1.58 false positives per volume for hyperdense lesion, respectively.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on

Date of Conference:

16-21 June 2012