By Topic

2D-to-3D image conversion by learning depth from examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Konrad, J. ; Dept. of Electr. & Comput. Eng., Boston Univ., Boston, MA, USA ; Meng Wang ; Ishwar, P.

Among 2D-to-3D image conversion methods, those involving human operators have been most successful but also time-consuming and costly. Automatic methods, that typically make use of a deterministic 3D scene model, have not yet achieved the same level of quality as they often rely on assumptions that are easily violated in practice. In this paper, we adopt the radically different approach of “learning” the 3D scene structure. We develop a simplified and computationally-efficient version of our recent 2D-to-3D image conversion algorithm. Given a repository of 3D images, either as stereopairs or image+depth pairs, we find k pairs whose photometric content most closely matches that of a 2D query to be converted. Then, we fuse the k corresponding depth fields and align the fused depth with the 2D query. Unlike in our original work, we validate the simplified algorithm quantitatively on a Kinect-captured image+depth dataset against the Make3D algorithm. While far from perfect, the presented results demonstrate that online repositories of 3D content can be used for effective 2D-to-3D image conversion.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on

Date of Conference:

16-21 June 2012