By Topic

Induction machine current space vector features to effectively discern and quantify rotor faults and external torque ripple

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Concari ; Universita` degli Studi di Parma, Parma, Italy ; G. Franceschini ; C. Tassoni

Intensive research efforts have been spent with the aim of separating the effects of load torque unbalance from those of rotor faults in induction machines. Recent literature reports that active and reactive components of the current space vector seem to show different features in correspondence of the two fault events. This study shows the angular displacement of the above components is fundamental in order to distinguish external torque ripple from rotor faults. The fault severity and the external torque ripple can also be effectively determined. Moreover, the proposed technique allows to assess the range of validity of the usual motor current signature analysis (MCSA), based on the sum of the amplitude of stator current sidebands, for quantifying rotor bar faults.

Published in:

IET Electric Power Applications  (Volume:6 ,  Issue: 6 )