By Topic

Time-Domain Analysis of Large-Scale Circuits by Matrix Exponential Method With Adaptive Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shih-Hung Weng ; Dept. of Comput. Sci. & Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Quan Chen ; Chung-Kuan Cheng

We propose an explicit numerical integration method based on matrix exponential operator for transient analysis of large-scale circuits. Solving the differential equation analytically, the limiting factor of maximum time step changes largely from the stability and Taylor truncation error to the error in computing the matrix exponential operator. We utilize Krylov subspace projection to reduce the computation complexity of matrix exponential operator. We also devise a prediction-correction scheme tailored for the matrix exponential approach to dynamically adjust the step size and the order of Krylov subspace approximation. Numerical experiments show the advantages of the proposed method compared with the implicit trapezoidal method.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 8 )