By Topic

A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khameneifar, F. ; Dept. of Mechatron. Syst. Eng., Simon Fraser Univ., Surrey, BC, Canada ; Arzanpour, S. ; Moallem, M.

This paper investigates the analysis and design of a vibration-based energy harvester for rotary motion applications. The energy harvester consists of a cantilever beam with a tip mass and a piezoelectric ceramic attached along the beam that is mounted on a rotating shaft. Using this system, mechanical vibration energy is induced in the flexible beam due to the gravitational force applied to the tip mass while the hub is rotating. The piezoelectric transducer is used to convert the induced mechanical vibration energy into electricity. The equations of motion of the flexible structure are utilized along with the physical characteristics of the piezoelectric transducer to derive expressions for the electrical power. Furthermore, expressions for the optimum load resistance and maximum output power are obtained and validated experimentally using PVDF and PZT transducers. The results indicate that a maximum power of 6.4 mW at a shaft speed of 138 rad/s can be extracted by using a PZT transducer with dimensions 50.8 mm × 38.1 mm × 0.13 mm. This amount of power is sufficient to provide power for typical wireless sensors such as accelerometers and strain gauges.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 5 )