By Topic

Effects of Prestrain Applied to a Polyethylene Terephthalate Substrate Before the Coating of Al-Doped ZnO Film on Film Quality, Electrical Properties, and Pop-In Behavior During Nanoindentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tse-Chang Li ; Dept. of Mech. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chang-Fu Han ; Bo-Hsiung Wu ; Po-Tsung Hsieh
more authors

Four kinds of polyethylene-terephthalate (PET)/Al-doped zinc oxide (AZO) specimen are prepared to examine the effects of prestrain applied to the PET substrate before the coating of the AZO film on the mechanical, material, and electrical properties, and the start of pop-in in the loading phase of nanoindentation. The electrical contact resistance function is used to measure the variations of electrical current during the nanoindentation process. With the aid of the stress-strain profile, the inflection point of the load-depth profile in the loading phase is identified as the start of pop-in, at or nearby which the electrical current sharply increases due to the significant increase in the indenter-film contact area. The pop-in depth decreases with increasing prestrain. The behavior demonstrated in the pop-in depth due to the change in the prestrain is exactly opposite to those of the quantity and the mean size of submicrometer voids/cracks. Increase in the quantity/size of film voids/cracks generally reduces the specimen's carrier mobility. The carrier mobility is presented to be inversely proportional to the sheet resistance. The electrical current created at the end of the loading process has its value inversely proportional to the number/size of film voids/cracks.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 5 )