Cart (Loading....) | Create Account
Close category search window
 

The Davey-MacKay Coding Scheme for Channels With Dependent Insertion, Deletion, and Substitution Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tong Wu ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Armand, M.A.

In this paper, we propose a new channel model which introduces dependent insertion, deletion, and substitution (DIDS) errors. This channel model mimics the write channel found in bit-patterned media recording (BPMR) systems. It consists of a ternary Markov state channel and a two-state binary symmetric channel (BSC). The ternary Markov state channel produces data-dependent and paired insertion-deletion errors while the two-state BSC produces random substitution errors, as well as burst-like substitution errors in the vicinity of insertions and deletions. In addition, we modify the inner decoder of the Davey-MacKay (DM) coding scheme for the proposed channel model. For the case where there are no burst-like substitution errors, computer simulations show that our modified inner decoder (which takes into account the dependencies between synchronization errors) yields superior frame error rate (FER) performance compared to that when the symbol-level inner decoder by Briffa (which ignores the dependencies between synchronization errors) is used. As the (computational) complexity of our inner decoder increases with the length of the burst-like substitution errors, we further propose a reduced-complexity variant of our inner decoder to handle these errors. Computer simulations show that under iterative decoding, FERs below 10-5 can be achieved with the reduced-complexity variant and a code of rate 0.71, when the insertion/deletion rates are low (≤10-3) and the burst-like error lengths before and after a synchronization error are short (≤5).

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.