Cart (Loading....) | Create Account
Close category search window
 

AmIRTEM: A Functional Model for Training of Aerobic Endurance for Health Improvement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gaeta, E. ; Dept. of Tecnol. Fotonica, Univ. Politec. de Madrid, Madrid, Spain ; Cea, G. ; Arredondo, M.T. ; Leuteritz, J.P.

In a nonstrenuous exercise, the heart rate (HR) shows a linear relationship with the maximum volume of oxygen consumption VO2Max and serves as an indicator of performance of the cardiovascular system. The HR replaces the %VO2Max in exercise program prescription to improve aerobic endurance. In order to achieve an optimal effect in an endurance training, the athlete needs to work out at an HR high enough to trigger the aerobic metabolism, while avoiding the very high HRs that bring along significant risks of myocardial infarction. The minimal and optimal base training programs, followed by stretching exercises to prevent injuries, are adequate programs to maximize benefits and minimize health risks for the cardiovascular system during single session training. In this paper, we have defined a functional model for an ambient intelligence system that monitors, evaluates, and trains the aerobic endurance. It is based on the Android operating system and the Gow Running smart shirt. The system has been evaluated during functional assessment stress testing of aerobic endurance in the Stress Physiology Laboratory (SPL) of the Technical University of Madrid. Furthermore, a voice system designed to guide the user through minimal and optimal base training programs has been evaluated. The results obtained fully confirm the model with a high correlation between the data collected by the system and the by SPL. There is also a high hit rate between training sessions of the users and the objective training functions defined in the training programs.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.