Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Extended Attribute Profiles (EAPs), which are obtained by applying morphological attribute filters to an image in a multilevel architecture, can be used for the characterization of the spatial characteristics of objects in a scene. EAPs have proved to be discriminant features when considered for thematic classification in remote sensing applications especially when dealing with very high resolution images. Altimeter data (such as LiDAR) can provide important information, which being complementary to the spectral one can be valuable for a better characterization of the surveyed scene. In this paper, we propose a technique performing a classification of the features extracted with EAPs computed on both optical and LiDAR images, leading to a fusion of the spectral, spatial and elevation data. The experiments were carried out on LiDAR data along either with a hyperspectral and a multispectral image acquired on a rural and urban area of the city of Trento (Italy), respectively. The classification accuracies obtained pointed out the effectiveness of the features extracted by EAPs on both optical and LiDAR data for classification.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 7 )