By Topic

Dynamics and control of the flexible needles for percutaneous application: Partial feedback linearization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maghsoudi, A. ; Robot. & Machine Vision Lab., Sharif Univ. of Technol., Tehran, Iran ; Jahed, M.

In this paper the dynamics and control of the underactuated flexible needle will be discussed. To evaluate the dynamics of the needle, the study uses Saint Venant-Kirchhoff and finite element method. The model is validated using the experimental data provided in the literature. It is also shown that using iterative decomposition of the dynamics equation the unactuated degree of freedom of the needle tip can be feedback linearized. The effect of the control signal exerted on the tip is projected via iterative decomposition of the dynamics equation. The efficiency of the approach will be next explored through some examples.

Published in:

Industrial Electronics (ISIE), 2012 IEEE International Symposium on

Date of Conference:

28-31 May 2012