Cart (Loading....) | Create Account
Close category search window

Position extraction from a discrete sliding-mode observer for sensorless control of IPMSMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Zhao ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Wei Qiao ; Long Wu

Sliding-mode observers (SMOs) offer a promising solution for sensorless control of interior permanent magnet synchronous machines (IPMSMs) due to their excellent robustness to system structure and parameter uncertainty. However, in practical applications, it is challenging for an SMO to achieve a perfect estimation for the back electromagnetic force (EMF) using a finite or relatively lower sampling frequency, especially for high-speed applications. Phase shift, magnitude variation, and heavy noise in the estimated back EMF will cause unexpected errors in rotor position extraction. Thus, advanced rotor position extraction methods are needed to obtain position information from the estimated back EMF. This paper proposes a novel estimated speed feedback algorithm to work together with the conventional inverse tangent method and angle tracking observer (ATO) to extract the rotor position from the extended back EMF obtained from a discrete SMO. The extracted position has reduced oscillations compared to that obtained from traditional methods. The proposed position extraction methods are validated by simulations in MATLAB Simulink as well as experiments on a practical IPMSM drive system.

Published in:

Industrial Electronics (ISIE), 2012 IEEE International Symposium on

Date of Conference:

28-31 May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.