By Topic

Boosting mobile GPU performance with a decoupled access/execute fragment processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arnau, J. ; Comput. Archit. Dept., Univ. Politec. de Catalunya, Barcelona, Spain ; Parcerisa, J. ; Xekalakis, P.

Smartphones represent one of the fastest growing markets, providing significant hardware/software improvements every few months. However, supporting these capabilities reduces the operating time per battery charge. The CPU/GPU component is only left with a shrinking fraction of the power budget, since most of the energy is consumed by the screen and the antenna. In this paper, we focus on improving the energy efficiency of the GPU since graphical applications consist an important part of the existing market. Moreover, the trend towards better screens will inevitably lead to a higher demand for improved graphics rendering. We show that the main bottleneck for these applications is the texture cache and that traditional techniques for hiding memory latency (prefetching, multithreading) do not work well or come at a high energy cost. We thus propose the migration of GPU designs towards the decoupled access-execute concept. Furthermore, we significantly reduce bandwidth usage in the decoupled architecture by exploiting inter-core data sharing. Using commercial Android applications, we show that the end design can achieve 93% of the performance of a heavily multithreaded GPU while providing energy savings of 34%.

Published in:

Computer Architecture (ISCA), 2012 39th Annual International Symposium on

Date of Conference:

9-13 June 2012