By Topic

A study of Computational Fluid Dynamics on membrane module in membrane distillation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. C. Chong ; Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia ; S. O. Lai ; K. M. Lee ; W. J. Lau
more authors

Membrane distillation is one of the recently interest rising membrane separation processes used for the separation of seawater and saline wastewater, and etc. Membrane distillation has the advantage of adopting the low grade waste energy and/or renewable energy such as solar and geothermal energy due to the nature of thermal driven process and low temperature range. Computational Fluid Dynamics (CFD) is a numerical simulation tool that is able to perform the calculation in order to investigate and simulate the performance of the processes that involve fluid, heat and mass transfer. In this study, a direct contact membrane distillation (DCMD) experiment will be studied using hollow fiber membrane module. A three dimensional (3D) CFD simulation will be examined for its viability in the investigation of the DCMD. Furthermore, various CFD multiphase models will be studied for its suitability in predicting heat and mass behavior within the membrane.

Published in:

Innovation Management and Technology Research (ICIMTR), 2012 International Conference on

Date of Conference:

21-22 May 2012