By Topic

Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fanti, M.P. ; Dept. of Electr. & Electron. Eng, Polytech. of Bari, Bari, Italy ; Mangini, A.M. ; Ukovich, W.

This paper addresses the problem of online fault detection and diagnosis in discrete event systems modeled by labeled Petri nets and using Integer Linear Programming Problem (ILPP) solutions. In particular, unobservable (silent) transitions model faults and both observable and unobservable transitions model the nominal system behavior. Furthermore, observable transitions exhibit a kind of non determinism since several different transitions may share the same event label. This paper proposes two diagnosers that work in two different system settings. The first one is a centralized fault detection strategy: the diagnoser waits for an observable event and an algorithm defines and solves some ILPPs to decide whether the system behavior is normal or may exhibit some faults. In the second setting, the system consists of a set of interacting PN modules and each module is monitored by a diagnoser that has local information on the module structure. Moreover, each diagnoser observes and detects the faults of the module it is attached to and shares information in some of its places that are shared with other modules of the system. Some case studies show the two different approaches and point out the peculiarities of the proposed strategies.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 2 )