By Topic

Multidimensional Sinusoidal Frequency Estimation Using Subspace and Projection Separation Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Longting Huang ; Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China ; Yuntao Wu ; So, H.C. ; Yanduo Zhang
more authors

In this correspondence, a computationally efficient method that combines the subspace and projection separation approaches is developed for R -dimensional (R-D) frequency estimation of multiple sinusoids, where R ≥ 3, in the presence of white Gaussian noise. Through extracting a 2-D slice matrix set from the multidimensional data, we devise a covariance matrix associated with one dimension, from which the corresponding frequencies are estimated using the root-MUSIC method. With the use of the frequency estimates in this dimension, a set of projection separation matrices is then constructed to separate all frequencies in the remaining dimensions. Root-MUSIC method is again applied to estimate these single-tone frequencies while multidimensional frequency pairing is automatically attained. Moreover, the mean square error of the frequency estimator is derived and confirmed by computer simulations. It is shown that the proposed approach is superior to two state-of-the-art frequency estimators in terms of accuracy and computational complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 10 )