Cart (Loading....) | Create Account
Close category search window
 

Spline Regression Hashing for Fast Image Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yang Liu ; Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China ; Fei Wu ; Yi Yang ; Yueting Zhuang
more authors

Techniques for fast image retrieval over large databases have attracted considerable attention due to the rapid growth of web images. One promising way to accelerate image search is to use hashing technologies, which represent images by compact binary codewords. In this way, the similarity between images can be efficiently measured in terms of the Hamming distance between their corresponding binary codes. Although plenty of methods on generating hash codes have been proposed in recent years, there are still two key points that needed to be improved: 1) how to precisely preserve the similarity structure of the original data and 2) how to obtain the hash codes of the previously unseen data. In this paper, we propose our spline regression hashing method, in which both the local and global data similarity structures are exploited. To better capture the local manifold structure, we introduce splines developed in Sobolev space to find the local data mapping function. Furthermore, our framework simultaneously learns the hash codes of the training data and the hash function for the unseen data, which solves the out-of-sample problem. Extensive experiments conducted on real image datasets consisting of over one million images show that our proposed method outperforms the state-of-the-art techniques.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.