By Topic

Modeling, Analysis, and Mitigation of Load Neutral Point Voltage for Three-Phase Four-Leg Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zeng Liu ; Sch. of Electr. Eng., Xi'an Jiaotong Univ., Xi'an, China ; Jinjun Liu ; Jin Li

The three-phase four-leg inverter is very suitable for the high-power uninterruptible power supply application, and the load neutral point voltage (LNPV) should meet the requirement. In this paper, two factors influencing the LNPV were revealed first, which are the switching states and the ratio of the neutral inductance to the phase inductance (k). Then, the 16 switching states can be classified into four groups, and the ones in the first and the second group come to the minimum amplitude of LNPV with a specific ratio k respectively. Third, three methods to mitigate the LNPV were proposed based on the analysis of LNPV. In the first method, switching states in the first group are just utilized, and the LNPV can be eliminated with the ratio k of unity. In the second method, the switching states in the fourth class are avoided, and the LNPV can be reduced. Common mode filter is used in the third method and the LNPV can be mitigated effectively with the ratio k of unity. Furthermore, the power losses in the first and the second method were estimated and were compared with the original situation. Finally, the proposed methods were verified by simulation and experimental results.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 5 )