Cart (Loading....) | Create Account
Close category search window
 

A Sea-Ice Lead Detection Algorithm for Use With High-Resolution Airborne Visible Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Onana, V. ; Cryospheric Sci. Branch, NASA Goddard Space Flight Center, Greenbelt, MD, USA ; Kurtz, N.T. ; Farrell, S.L. ; Koenig, L.S.
more authors

The detection of leads, or cracks, in sea ice is critical for the derivation of sea-ice freeboard from altimetric measurements of sea-ice elevation. We present an approach for lead detection in sea ice using high-resolution visible imagery from airborne platforms. We develop a new algorithm, i.e., the sea-ice lead detection algorithm using minimal signal (SILDAMS), that detects clouds, extracts leads, and classifies ice types within leads from airborne visible imagery. Cloud detection is based on an assessment of local variances of pixel brightness across image scenes and where available coincident altimetric measurements are used to confirm suspected cloudy scenes. The lead extraction step computes affine time-frequency distributions (minimal signal) for the Red, Green, and Blue channels of each image. The transformed outputs are combined to take advantage of three channels simultaneously. Finally, lead pixel geolocations are extracted using a set of uniform thresholds for ice typing (including open water, thin ice, and gray ice) within leads along each flight line. SILDAMS was tested using data from the Digital Mapping System (DMS). DMS digital photographs represent the highest resolution ( ≈10 cm) visible imagery available over sea ice and were collected during NASA Operation IceBridge sea-ice flights in the Antarctic and the Arctic in 2009 and 2010, respectively. We demonstrate that SILDAMS has a high lead detection capability of 99%.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.