By Topic

The First-Order Symplectic Euler Method for Simulation of GPR Wave Propagation in Pavement Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongyuan Fang ; Fac. of Infrastruct. Eng., Dalian Univ. of Technol., Dalian, China ; Gao Lin ; Ruili Zhang

Construction of electromagnetic wave propagation model in layered pavement structure is a key problem for applying ground penetrating radar (GPR) to the road quality detection. A first-order explicit symplectic Euler method with Higdon absorbing boundary condition is presented to simulate GPR wave propagation in 2-D pavement structure. The incident wave is considered as line source and plane wave source, respectively. The total-field/scatter-field technique is used to simulate plane wave excitation. Numerical examples are provided to verify the accuracy and efficiency of the proposed algorithm. It can be observed that the symplectic Euler method achieves almost the same level of accuracy as the finite-difference time-domain scheme, while saving CPU time considerably.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )