By Topic

Hyperspectral Image Classification via Kernel Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Chen ; Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA ; Nasser M. Nasrabadi ; Trac D. Tran

In this paper, a novel nonlinear technique for hyperspectral image (HSI) classification is proposed. Our approach relies on sparsely representing a test sample in terms of all of the training samples in a feature space induced by a kernel function. For each test pixel in the feature space, a sparse representation vector is obtained by decomposing the test pixel over a training dictionary, also in the same feature space, by using a kernel-based greedy pursuit algorithm. The recovered sparse representation vector is then used directly to determine the class label of the test pixel. Projecting the samples into a high-dimensional feature space and kernelizing the sparse representation improve the data separability between different classes, providing a higher classification accuracy compared to the more conventional linear sparsity-based classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated through a kernelized joint sparsity model, where all of the pixels within a small neighborhood are jointly represented in the feature space by selecting a few common training samples. Kernel greedy optimization algorithms are suggested in this paper to solve the kernel versions of the single-pixel and multi-pixel joint sparsity-based recovery problems. Experimental results on several HSIs show that the proposed technique outperforms the linear sparsity-based classification technique, as well as the classical support vector machines and sparse kernel logistic regression classifiers.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 1 )