By Topic

Characterization of Maximum Radar Reflectivity Height During Stratiform Rain Events

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Romo, J.A. ; Electron. & Telecommun. Dept., Univ. of the Basque Country, Bilbao, Spain ; Maruri, M. ; Perez-Fontan, F. ; Fernandez, I.

The effects of rain on terrestrial and satellite communication systems, especially at frequencies above 10 GHz, have been statistically dealt with at length. It is also well known that rain height plays an important role in signal fading and co-channel interference due to scattering. The rain height is directly related to the 0°C isotherm. At this height hydrometeors change from solid to liquid state in the melting layer, increasing their reflectivity and causing the bright band effect in radar measurements. The bright band is defined by the top, bottom and maximum reflectivity heights. The peak reflectivity height can be obtained from radar volume scans. This paper presents a statistical characterization of the time and space variability of the maximum reflectivity height during stratiform rain events. This paper also focuses on the dependence between simultaneous meteorological parameters derived from weather radar and from surface automatic weather observation stations at local scale in a temperate climate region. The data used in this study was obtained from 2006 to 2011.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 10 )