By Topic

Simplified Circuit Model for Arrays of Metallic Dipoles Sandwiched Between Dielectric Slabs Under Arbitrary Incidence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
María Garcia-Vigueras ; Dept. de las Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Murcia, Spain ; Francisco Mesa ; Francisco Medina ; Raúl Rodriguez-Berral
more authors

This work presents an equivalent circuit to model the transmission/reflection of a plane wave that impinges obliquely on a periodic arrangement of metallic rectangular dipoles embedded between two dielectric slabs. The equivalent circuit takes advantage of the periodicity of the structure to reformulate the original problem as a certain equivalent waveguide scattering problem. Equivalent transmission lines are used to simulate the wave propagation whereas equivalent lumped circuit elements account for presence of the metallic patches. The obtaining of the circuit parameters is carried out via a systematic procedure, which provides a robust strategy that gives rise to surprisingly accurate results even for rather complex situations. The proposed equivalent circuit model simplifies considerably the original complex electromagnetic problem and provides a valuable physical insight into the parameters that are relevant in the phenomenon as well as an in-depth understanding of the operation principles of the periodic surface. Thus, the reported reduced-order model of the corresponding scattering problem can be a very convenient and helpful tool for the analysis and/or design of many practical devices.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 10 )