By Topic

Reliable Diagnosis of Large Linear Arrays—A Bayesian Compressive Sensing Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Giacomo Oliveri ; ELEDIA Research Center@DISI, University of Trento, Trento, Italy ; Paolo Rocca ; Andrea Massa

An innovative array diagnosis technique based on a compressive-sensing (CS) paradigm is introduced in the case of linear arrangements. Besides detecting the faulty elements, the approach is able to provide the degree of reliability of such an estimation. Starting from the measured samples of the far-field pattern, the array diagnosis problem is formulated in a Bayesian framework and it is successively solved with a fast relevance vector machine (RVM). The arising Bayesian compressive sensing (BCS) approach is numerically validated through a set of representative examples aimed at providing suitable user's guidelines as well as some insights on the method features and potentialities.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 10 )