Cart (Loading....) | Create Account
Close category search window

The Second-Order High Frequency Radar Ocean Surface Cross Section for an Antenna on a Floating Platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Walsh, J. ; Northern Radar Inc., St. John''s, NL, Canada ; Weimin Huang ; Gill, E.

The second-order high frequency (HF) radar cross section (RCS) of the ocean surface, normalized to the area of the scattering patch, is derived for the case in which the radar transmitting and receiving antennas are mounted on a swaying platform or barge. The second-order result includes both electromagnetic and hydrodynamic contributions. The derivation for the hydrodynamic patch scatter component, for time pulsed radars, is based on the first-order RCS found in the counterpart of this paper by replacing the first-order ocean wave spectrum with the second-order ocean wave spectrum. The electromagnetic patch scatter development begins with a general expression for the bistatically received second-order electric field in which platform sway is introduced. Based on an assumption that the ocean surface can be described as a Fourier series whose coefficients are random variables, the second-order monostatic RCS is developed. The resulting second-order cross section is found to consist of Bessel functions and no singularity exists in the newly derived electromagnetic coupling coefficient. Simulation results for the new RCS are also provided to indicate the effects of barge motion under a variety of sea states.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.