By Topic

Printed Magnetoinductive-Wave (MIW) Delay Lines for Chipless RFID Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Francisco Javier Herraiz-Martinez ; Department of Signal Theory and Communications, Carlos III University in Madrid, Leganés (Madrid), Spain ; Ferran Paredes ; Gerard Zamora Gonzalez ; Ferran Martin
more authors

A novel fully passive and electromagnetic chipless radiofrequency identification (RFID) system is proposed. The system is based on printed tags implemented with magnetoinductive-wave (MIW) delay lines. Such lines are composed of a periodic array of coupled square split ring resonators (SSRRs) and propagate slow waves. The tag is codified by introducing reflectors (which provide the identification signature) between the elements of the array. When the tags are interrogated with a pulse in time domain, they produce replicas at the positions where the reflectors are placed. Thanks to the slow group velocity of the MIW delay line, the replicas of the original pulse are not overlapped in time domain and can be demodulated, thus providing the identification code of the tag. The design considerations to implement these chipless tags are studied in the present work. Moreover, a complete set of codified MIW lines for a two-bit system is designed, manufactured and measured. The reported experimental results validate the proposed approach.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 11 )
IEEE RFID Virtual Journal