By Topic

Closed-Form Analysis of Reflection Losses in Microstrip Reflectarray Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Filippo Costa ; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy ; Agostino Monorchio

Microstrip reflectarray antennas consist of a grounded quasi-periodic array of printed elements able to compensate the phase displacement of a non-coherent electromagnetic excitation generated by a feeder. The design of reflectarray antennas is usually accomplished by tracing the reflection phase diagram of the periodic version of the printed surface, which is analogous to a high-impedance surface (HIS). Reflection losses of this periodic structure are here analyzed through a simple equivalent transmission line model. The analytical expressions of the surface impedance offered by a HIS (real and imaginary part) as a function of the imaginary part of the dielectric permittivity of the substrate are derived through well justified approximations. Some useful practical examples are then presented both for verifying the accuracy of the derived closed-form expressions and for studying the effect of the geometrical and electrical parameters of the periodic surface on the reflection losses. The dependence of the input impedance on the capacitance associated with the printed pattern is highlighted, demonstrating that highly capacitive elements (tightly coupled subwavelength elements) are preferable for minimizing reflection losses.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 10 )