By Topic

MIMO-UWB Channel Characterization Within an Underground Mine Gallery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ismail Ben Mabrouk ; Computer Science and Engineering, University of Quebec in Outaouais, Gatineau, Quebec, Canada ; Larbi Talbi ; Mourad Nedil ; Khelifa Hettak

Multiple input multiple output-ultrawide band (MIMO-UWB) systems are experimentally evaluated for underground mine high-speed radio communications. Measurement campaigns using two different antenna configurations have been made in an underground gold mine. Furthermore, two scenarios, which are the line of sight (LoS) and the non-LoS (NLoS), i.e., taking into account the mining machinery effect, are distinguished and studied separately. In fact, the channel is characterized in terms of coherence bandwidth, path loss, shadowing, channel correlation, and capacity. Results reveal how antenna array configuration affects main channel parameters and suggest that mining machinery presence substantially affects both received power and time dispersion parameters within the underground mine and should, therefore, be considered when assessing the performance of in-gallery wireless systems. Moreover, it is shown that the MIMO-UWB takes benefit of the large spreading bandwidth and the multipath propagation environment to increase the channel capacity.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 10 )