By Topic

Deorientation Effect Investigation for Model-Based Decomposition Over Oriented Built-Up Areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Si-Wei Chen ; Grad. Sch. of Environ. Studies, Tohoku Univ., Sendai, Japan ; Ohki, M. ; Shimada, M. ; Sato, M.

Deorientation processing has been incorporated into model-based decomposition to cure the overestimation of volume scattering contribution, by rotating the coherency matrix to minimize the cross-polarization term. First, the derivation of the rotation angle is clarified for avoiding the ambiguity. Moreover, even with the implementation of deorientation processing, oriented built-up areas with large orientation angles are still misjudged as volume scattering dominant. Further to the investigation of the deorientation effect, we focus on oriented built-up patches. A parameter, named dominant polarization orientation angle (DPOA), is introduced to label each patch. The behavior of the deorientation on coherency matrix and model-based decomposition over purely oriented built-up areas with respect to DPOA is disclosed. Experimental studies from the Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) polarimetric SAR data set demonstrate that model-based decompositions with deorientation work well for oriented built-up areas when |DPOA| ≤ 22.5°. However, for large |DPOA| (e.g., |DPOA| >; 22.5°), even with the deorientation processing, for the conventional decompositions which assume that only the volume scattering contributes to the cross-polarization term, the decomposed volume scattering power may also be dominant even for purely oriented built-up areas. Thereby, misinterpretation still occurs, motivating further advancements.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 2 )