By Topic

Dynamic Stability of Three-Phase Grid-Connected Photovoltaic System Using Zero Dynamic Design Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahmud, M.A. ; Sch. of Eng. & Inf. Technol., Univ. of New South Wales at the Australian Defence Force Acad., Canberra, ACT, Australia ; Pota, H.R. ; Hossain, M.J.

This paper presents a new approach to control the grid current and dc-link voltage for maximum power point tracking and improvement of the dynamic response of a three-phase grid-connected photovoltaic (PV) system. To control the grid current and dc-link voltage, the zero dynamic design approach of feedback linearization is used, which linearizes the system partially and enables controller design for reduced-order PV system. This paper also describes the zero dynamic stability of the three-phase grid-connected PV system, which is a key requirement for the implementation of such controllers. Simulation results on a large-scale grid-connected PV system show the effectiveness of the proposed control scheme in terms of delivering maximum power into the grid.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 4 )