Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Field Transmission of 100 G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhensheng Jia ; ZTE USA Inc., Morristown, NJ, USA ; Jianjun Yu ; Hung-Chang Chien ; Ze Dong
more authors

Successful joint experiments with Deutsche Telecom (DT) on long-haul transmission of 100 G and beyond are demonstrated over standard single-mode fiber (SSMF) and inline erbium-doped fiber amplifier-only amplification. The transmission link consists of eight nodes and 950-km installed SSMF in DT's optical infrastructure with the addition of lab SSMF for extended optical reach. The first field transmission of 8 × 216.8-Gb/s Nyquist-WDM signals is reported over 1750-km distance with 21.6-dB average loss per span. Each channel modulated by a 54.2-Gbaud PDM-CSRZ-QPSK signal is on 50-GHz grid, achieving a net spectral efficiency (SE) of 4 bit/s/Hz. We also demonstrate mixed data-rate transmission coexisting with 1 T, 400 G, and 100 G channels. The 400 G uses four independent subcarriers modulated by 28-Gbaud PDM-QPSK signals, yielding the net SE of 4 bit/s/Hz while 13 optically generated subcarriers from single optical source are employed in 1 T channel with 25-Gbaud PDM-QPSK modulation. The 100 G signal uses real-time coherent PDM-QPSK transponder with 15% overhead of soft-decision forward-error correction. The digital postfilter and 1-bit maximum likelihood sequence estimation are introduced at the receiver DSP to suppress noise, linear crosstalk, and filtering effects. Our results show the future 400 G and 1 T channels utilizing the Nyquist wavelength division multiplexing technique can transmit long-haul distance with higher SE using the same QPSK format.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 24 )