Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

DySER: Unifying Functionality and Parallelism Specialization for Energy-Efficient Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The DySER (Dynamically Specializing Execution Resources) architecture supports both functionality specialization and parallelism specialization. By dynamically specializing frequently executing regions and applying parallelism mechanisms, DySER provides efficient functionality and parallelism specialization. It outperforms an out-of-order CPU, Streaming SIMD Extensions (SSE) acceleration, and GPU acceleration while consuming less energy. The full-system field-programmable gate array (FPGA) prototype of DySER integrated into OpenSparc demonstrates a practical implementation.

Published in:

Micro, IEEE  (Volume:32 ,  Issue: 5 )