By Topic

Hyperthermia critical tissues automatic segmentation of head and neck CT images using atlas registration and graph cuts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fortunati, V. ; Dept. of Med. Inf. & Radiol., Erasmus MC, Rotterdam, Netherlands ; Verhaart, R.F. ; van der Lijn, F. ; Niessen, W.J.
more authors

Outcome optimization of hyperthermia tumor treatment in the head and neck requires accurate hyperthermia treatment planning. Hyperthermia treatment planning is based on tissue segmentation for 3D patient model generation. We present here an automatic atlas-based segmentation algorithm for the organs at risk from CT images of the head and neck. To overcome the large anatomical variability, atlas registration and intensity-based classification were combined. A cost function composed of an intensity energy term, a spatial prior energy term based on the atlas registration and a regularization term is globally minimized using graph cut. The method was evaluated by measuring Dice similarity coefficient, mean and Hausdorff surface distances with respect to manual delineation. Overall a high correspondence was found with Dice similarity coefficient higher than 0.86 and a mean distance lower than the voxel resolution.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012