By Topic

Poisson-Gaussian noise parameter estimation in fluorescence microscopy imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jezierska, A. ; LIGM, Univ. Paris-Est, Marne-la-Vallée, France ; Talbot, H. ; Chaux, C. ; Pesquet, J.
more authors

In this paper, we present a new fully automatic approach for noise parameter estimation in the context of fluorescence imaging systems. In particular, we address the problem of Poisson-Gaussian noise modeling in the nonstationary case. In microscopy practice, the nonstationarity is due to the photobleaching effect. The proposed method consists of an adequate moment based initialization followed by Expectation-Maximization iterations. This approach is shown to provide reliable estimates of the mean and the variance of the Gaussian noise and of the scale parameter of Poisson noise, as well as of the photobleaching rates. The algorithm performance is demonstrated on both synthetic and real macro confocal laser scanning microscope image sequences.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012