By Topic

3D reconstruction of wave-propagated point sources from boundary measurements using joint sparsity and finite rate of innovation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zafer Dogan ; Medical Image Processing Lab (MIPLAB), Institute of Bioengineering, EPFL, CH-1015 Lausanne, Switzerland ; Ivana Jovanovic ; Thierry Blu ; Dimitri Van De Ville

Reconstruction of point sources from boundary measurements is a challenging problem in many applications. Recently, we proposed a new sensing and non-iterative reconstruction scheme for systems governed by the three-dimensional wave equation. The points sources are described by their magnitudes and positions. The core of the method relies on the principles of finite-rate-of-innovation, and allows retrieving the parameters in the continuous domain without discretization. Here we extend the method when the source configuration shows joint sparsity for different temporal frequencies; i.e., the sources have same positions for different frequencies, not necessarily the same magnitudes. We demonstrate that joint sparsity improves upon the robustness of the estimation results. In addition, we propose a modified multi-source version of Dijkstra's algorithm to recover the Z parameters. We illustrate the feasibility of our method to reconstruct multiple sources in a 3-D spherical geometry.

Published in:

2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)

Date of Conference:

2-5 May 2012