By Topic

A marginalised Markov Chain Monte Carlo approach for model based analysis of EEG data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hettiarachchi, I. ; Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia ; Mohamed, S. ; Nahavandi, S.

The work presented in this paper focuses on fitting of a neural mass model to EEG data. Neurophysiology inspired mathematical models were developed for simulating brain's electrical activity imaged through Electroencephalography (EEG) more than three decades ago. At the present well informative models which even describe the functional integration of cortical regions also exists. However, a very limited amount of work is reported in literature on the subject of model fitting to actual EEG data. Here, we present a Bayesian approach for parameter estimation of the EEG model via a marginalized Markov Chain Monte Carlo (MCMC) approach.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012