Cart (Loading....) | Create Account
Close category search window

Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Detection and identification of macromolecular complexes in cryo-electron tomograms is challenging due to the extremely low signal-to-noise ratio (SNR). While the state-of-the-art method is template matching with a single template, we propose a 3-step supervised learning approach: (i) pre-detection of candidates, (ii) feature calculation, and (iii) final decision using a support vector machine (SVM). We use two types of features for SVM: (i) correlation coefficients from multiple templates, and (ii) rotation invariant features derived from spherical harmonics. Experiments conducted on both simulated and experimental tomograms show that our approach outperforms the state-of-the-art method.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.