By Topic

Image registration error analysis with applications in single molecule microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cohen, E.A.K. ; Eric Jonsson Sch. of Electr. Eng. & Comput. Sci., Univ. of Texas at Dallas, Richardson, TX, USA ; Ober, R.J.

This paper is concerned with assessing localization errors emanating from the image registration of two monochromatic fluorescence microscopy images. Assuming an affine transform exists between images, registration in this setting typically involves using control points to solve a multivariate linear regression problem; however with measurement errors existing in both sets of variables the use of linear least squares is inappropriate. It is shown that image registration is an errors-in-variable problem and as such the correct method is to use generalized least squares. Traditionally this requires the measurement errors to be independent and identically distributed (iid); an assumption that is rarely satisfied in practical situations. An extension of the multivariate generalized least squares estimator that allows non-iid noise is applied. The distributional properties of the estimators are used to derive localization errors emanating from the image registration process in terms of photon counts and experimental parameters.

Published in:

Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on

Date of Conference:

2-5 May 2012